Sugarcane Biomass Pyrolysis

Caroline Huang
Class of 2014
Chemical Engineering
Washington University
2012 UNICAMP – Brazil
June 6, 2012
Overview

- Pyrolysis Process
- Whole Sugarcane Pyrolysis Considerations
- Why Pyrolysis
- Position of Bioenergy
Pyrolysis – Basic Principles

- The thermo decomposition process of biomass without oxygen
- Biomass chemical composition:
 - hemicellulose, cellulose, lignin
- Products:
 - Gas (CO, H2, methane)
 - Char (carbon)
 - Bio-oil (complex mixture)
Pyrolysis Process
Features

- High temperature and heating rate
- Short vapor residence time
 - Normally less than 2s.
- Rapid cooling of pyrolysis vapor to form bio-oil.
- Electrostatic precipitator

Sugarcane Pyrolysis – Technical Consideration

- Drying difficulties
 - 50% water
 - Pre-treatment: Sun drying
 - Gasification to extract water after bio-oil produced

- Reactor Configuration
 - Fluid Bed
 - Particle size limit: 2mm in smallest dimension
Sugarcane Pyrolysis – Technical Consideration

- Reaction Condition
 - 500-525 degree Celsius for maximum liquid fuel production from wood. Yield: 80%
 - Experiments needed to optimized reaction condition for sugarcane.

Economic Consideration

Ethanol
- Direct use
- Transportation: truck
- Yield: 80L/ton of sugarcane
- Time: 10hr processing time
- Cost: US$0.25 – 0.3/liter

Bio-oil
- Further processing needed
- Transportation: pipeline
- Yield: expected 50% - 75%
- Time: Shorter than bio-process
- Cost: comparison with ethanol

Why Pyrolysis?

- Logistic cost reduction
 - Transport cost reduction as sugarcane is transported in chops instead of the whole
- Higher energy conversion
 - Lignin decomposition
- Shorter process time, higher efficiency of the plant

Position of Bioenergy

- Supportive
- Positive energy conversion
 - Net energy ratio (NER) is 8.0 for Brazil sugarcane-derived ethanol production
- Decrease competition with food
- Market force resolve food shortage
- Cheaper than other alternative energy resources
References

References

Thank You!