Women & Engineering Event: What's new in the Cortex Districthttps://engineering.wustl.edu/Events/Pages/Engineers-Week-Event-Women-Engineering-at-Venture-Cafe.aspx1394Women & Engineering Event: What's new in the Cortex District2018-02-22T06:00:00Z5:30 p.m.CORTEX Innovation Commmunity, 4240 Duncan Ave #110<p>Join us for a Women & Engineering event during National Engineers Week — Women & Engineering: What's new in the Cortex District<br/></p><p><strong>5:30 p.m. </strong>Reception<br/><strong>6 p.m.</strong> Presentation</p><p>Áine O'Conner, Special Initiatives Lead from the <a href="http://mailingsresponse.wustl.edu/trk/click?ref=z1030up2e7_1-9886x36cf5x0183&" target="_blank" rel="noopener noreferrer">CORTEX Innovation Community</a>, will discuss the evolution and growth of this exciting area. Enjoy light appetizers and refreshments while networking with fellow alumni and current students. Deepen the conversation by attending the <a href="http://mailingsresponse.wustl.edu/trk/click?ref=z1030up2e7_1-9886x36cf6x0183&" target="_blank" rel="noopener noreferrer">Venture Café</a> before or after the presentation.<br/></p>Julie Anderson, anderson.julie@wustl.edu
Seminar: "Geochemical Alteration of Fractures in the Subsurface Environment: A Pore- and Core-Scale Perspective"https://engineering.wustl.edu/Events/Pages/Seminar.aspx1461Seminar: "Geochemical Alteration of Fractures in the Subsurface Environment: A Pore- and Core-Scale Perspective"2018-02-23T06:00:00Z11 a.m.noonBrauer Hall, Room 12<p>Hang Deng, Postdoctoral Fellow, Lawrence Berkeley National Lab, will present.<br/></p><p><b>​Abstract: </b><span style="font-family: sans-serif; font-size: 16.6px;">Fractures are the preferential </span><span style="font-family: sans-serif; font-size: 16.6px;">flow pathways in the subsurface </span><span style="font-family: sans-serif; font-size: 16.6px;">environment, and are subject to </span><span style="font-family: sans-serif; font-size: 16.6px;">alteration caused by coupled </span><span style="font-family: sans-serif; font-size: 16.6px;">geochemical</span><span style="font-family: sans-serif; font-size: 16.6px;">-</span><span style="font-family: sans-serif; font-size: 16.6px;">mechanical</span><span style="font-family: sans-serif; font-size: 16.6px;">-</span><span style="font-family: sans-serif; font-size: 16.6px;">hydrological</span><span style="font-family: sans-serif; font-size: 16.6px;">-</span><span style="font-family: sans-serif; font-size: 16.6px;">thermal processes </span><span style="font-family: sans-serif; font-size: 16.6px;">triggered by mineral-</span><span style="font-family: sans-serif; font-size: 16.6px;">fluid inter-</span><span style="font-family: sans-serif; font-size: 16.6px;">actions. </span><span style="font-family: sans-serif; font-size: 16.6px;">Improved understanding of fracture evolution is critical for <span style="font-size: 16.6px;">the assessment and prediction of </span><span style="font-size: 16.6px;">the performance of various geo</span><span style="font-size: 16.6px;">logical systems </span><span style="font-size: 16.6px;">associated with </span><span style="font-size: 16.6px;">subsurface energy harness and </span><span style="font-size: 16.6px;">storage, resources (e.g. ground-</span><span style="font-size: 16.6px;">water and minerals) recovery, </span><span style="font-size: 16.6px;">waste disposal and etc..</span></span></p><div style="left: 259.233px; top: 713.667px; font-size: 16.6px; font-family: sans-serif;">My research puts an emphasis on <span style="font-size: 16.6px;">the coupled geochemical and </span><span style="font-size: 16.6px;">hydrological processes that affect </span><span style="font-size: 16.6px;">fracture evolution in </span><span style="font-size: 16.6px;">heterogene-</span><span style="font-size: 16.6px;">ous</span><span style="font-size: 16.6px;"> porous media. The </span><span style="font-size: 16.6px;">objectives</span><span style="font-size: 16.6px;">are</span><span style="font-size: 16.6px;"> (1) to provide fundamental </span><span style="font-size: 16.6px;">understanding of mechanisms </span><span style="font-size: 16.6px;">that control fracture alteration </span><span style="font-size: 16.6px;">at the pore</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">and core</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">scale, </span><span style="font-size: 16.6px;">and (2) to develop predictive </span><span style="font-size: 16.6px;">models and constitutive rela</span><span style="font-size: 16.6px;">tions for effective integration of </span><span style="font-size: 16.6px;">fine scale processes and heter</span><span style="font-size: 16.6px;">o</span><span style="font-size: 16.6px;">g</span><span style="font-size: 16.6px;">e</span><span style="font-size: 16.6px;">n</span><span style="font-size: 16.6px;">e</span><span style="font-size: 16.6px;">i</span><span style="font-size: 16.6px;">t</span><span style="font-size: 16.6px;">y </span><span style="font-size: 16.6px;">i</span><span style="font-size: 16.6px;">n</span><span style="font-size: 16.6px;">t</span><span style="font-size: 16.6px;">o </span><span style="font-size: 16.6px;">l</span><span style="font-size: 16.6px;">a</span><span style="font-size: 16.6px;">r</span><span style="font-size: 16.6px;">g</span><span style="font-size: 16.6px;">e </span><span style="font-size: 16.6px;">s</span><span style="font-size: 16.6px;">c</span><span style="font-size: 16.6px;">a</span><span style="font-size: 16.6px;">l</span><span style="font-size: 16.6px;">e </span><span style="font-size: 16.6px;">a</span><span style="font-size: 16.6px;">n</span><span style="font-size: 16.6px;">a</span><span style="font-size: 16.6px;">l</span><span style="font-size: 16.6px;">y</span><span style="font-size: 16.6px;">sis.  </span><span style="font-size: 16.6px;">In this talk, I will present core</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">scale simulation results from </span><span style="font-size: 16.6px;">a </span><span style="font-size: 16.6px;">reactive transport model that </span><span style="font-size: 16.6px;">was </span><span style="font-size: 16.6px;">developed and validated </span><span style="font-size: 16.6px;">based on laboratory experi</span><span style="font-size: 16.6px;">ments. The numerical experi</span><span style="font-size: 16.6px;">ments were performed under a </span><span style="font-size: 16.6px;">range of flow, geometric and </span><span style="font-size: 16.6px;">mineralogical conditions </span><span style="font-size: 16.6px;">, and </span><span style="font-size: 16.6px;">used to develop a </span><span style="font-size: 16.6px;">multi</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">reaction Damköhler number for </span><span style="font-size: 16.6px;">the prediction of fracture evo</span><span style="font-size: 16.6px;">lution in multi</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">mineral systems. </span><span style="font-size: 16.6px;">This framework provides im</span><span style="font-size: 16.6px;">portant implications for caprock </span><span style="font-size: 16.6px;">integrity in geologic carbon stor</span><span style="font-size: 16.6px;">age systems. I will also present a </span><span style="font-size: 16.6px;">pore</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">scale investigation of the </span><span style="font-size: 16.6px;">compound effects of surface </span><span style="font-size: 16.6px;">roughness on reaction rates of a </span><span style="font-size: 16.6px;">single rough fracture. In addition </span><span style="font-size: 16.6px;">to providing mechanistic under</span><span style="font-size: 16.6px;">standing of the interplay be</span><span style="font-size: 16.6px;">tween flow, transport and reac</span><span style="font-size: 16.6px;">tions at extremely fine scale, the </span><span style="font-size: 16.6px;">simulations were used to devel</span><span style="font-size: 16.6px;">op upscaling rules such that pore</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">scale processes arising from </span><span style="font-size: 16.6px;">surface roughness can be ac</span><span style="font-size: 16.6px;">counted for in continuum</span><span style="font-size: 16.6px;">-</span><span style="font-size: 16.6px;">scale </span><span style="font-size: 16.6px;">models effectively. </span></div>
PhD Visit Dayhttps://engineering.wustl.edu/Events/Pages/PhD-Visit-Day.aspx1412PhD Visit Day2018-03-02T06:00:00ZWhitaker Hall<p>This event is for prospective PhD students. Specific events, including panel sessions, will vary by department. <br/></p><p><strong>4-6 p.m.</strong> <br/>Reception in Whitaker Atrium<br/>Poster session on 2nd & 3rd floors.<br/></p>Graduate Student Services, eng-gradstudserv@wustl.edu
Seminar: "Investigating Complex Mixtures Using Ultrahigh Resolution Orbitrap Elite Mass Spectrometry: The Molecular Composition of Wildland Fire Aerosol"https://engineering.wustl.edu/Events/Pages/Mazzoleni.aspx1462Seminar: "Investigating Complex Mixtures Using Ultrahigh Resolution Orbitrap Elite Mass Spectrometry: The Molecular Composition of Wildland Fire Aerosol"2018-03-02T06:00:00Z11 a.m.noonBrauer Hall, Room 12<p>Lynn R. Mazzoleni will present. <br/></p><p><strong>Abstract: </strong><span style="text-align: justify;">Wildland biomass burning, in the form of wildfires or prescribed burning, is an important emission source of </span><span style="text-align: justify;">organic aerosol to the atmosphere contributing to climate change, visibility reduction, and adverse human health affects. The molecular chemistry of atmospheric aerosol is important because it can be used to better understand its lifecycle and the physical properties of aerosol in the atmosphere. In this work, we investigated the molecular properties of water-soluble organic carbon (WSOC) for five globally important fuels: Alaskan peat, Russian peat, Florida swamp peat, wildland cheat grass, and Ponderosa pine needles. Aerosol from l</span><span style="text-align: justify;">aboratory controlled combustion experiments was collected on filters and extracted in HPLC grade water.<br/></span><span style="text-align: justify;"><br/>Ultrahigh resolution mass spectrometry was performed after a 2-step solid-phase extraction procedure using a modified HULIS protocol. Thousands of molecular formulas were assigned to the mass spectra collected after electrospray ionization and atmospheric pressure photoionization. CHO compounds were the most dominant fraction by number, followed by CHNO and CHOS compounds. In all cases, a wide molecular diversity of compounds was eluted in the first elution, while less oxidized and more aromatic molecules with lower average O/C and H/C ratios were eluted with alkaline methanol. We observed Absorption Ångström Exponents (AAE) of 10.4-15.2 for the first elution and 6.7-8.8 for the second elution, indicating clear differences in the absorption properties of WSOC in the two elutions. Overall, most of the assigned molecular formulas demonstrated low O/C ratio (< 1) typical for fresh biomass combustion aerosols. Molecular similarity was observed in all 3 peat burning aerosol samples and the 2 wildland fuel samples (cheat grass and Ponderosa pine needles), however the two types of fuels were considerably different, particularly with respect to the molecular weight range of the species. This is most likely due to the difference in combustion, where peat fuels only smoldered, but cheat grass and pine needles had a flaming period before smoldering.<br/></span><span style="text-align: justify;"><br/>In this seminar, I will demonstrate the power of ultrahigh resolution mass spectrometry with novel insights on the detailed molecular chemistry of biomass combustion aeros</span><span style="text-align: justify;">ol.</span><span style="text-align: justify;">  </span></p>
Seminar: "Personal Exposure to Indoor Air Pollutants - Are you to blame, or is it the building's fault?"https://engineering.wustl.edu/Events/Pages/hildemann.aspx1463Seminar: "Personal Exposure to Indoor Air Pollutants - Are you to blame, or is it the building's fault?"2018-03-09T06:00:00Z11 a.m.noonBrauer Hall, Room 12<p>​LYNN HILDEMANN, PROFESSOR, DEPT. OF CIVIL AND ENVIRONMENTAL ENGINEERING, STANFORD UNIVERSITY, WILL PRESENT.<br/></p>
Graduate Research Symposiumhttps://engineering.wustl.edu/Events/Pages/Graduate-Research-Symposium-2018.aspx1457Graduate Research Symposium2018-03-20T05:00:00Z<ul><li>The Graduate Research Symposium is an opportunity for graduate and professional students to share their novel research with peers from all disciplines. <br/></li><li>Participants will create a poster and a five minute speech intended to explain their research.<br/></li><li>Cash Prizes! Presentations will be judged based on their disciplines and there will be winners for each.<br/></li><li>Seoul Taco will be available for all presenters and judges. <br/></li></ul>
Alumni Achievement Awardshttps://engineering.wustl.edu/Events/Pages/Alumni-Achievement-Awards-4-26.aspx1042Alumni Achievement Awards2018-04-26T05:00:00Z6 p.m.Saint Louis Art Museum, 1 Fine Arts Drive, St. Louis, MO 63110Engineering Alumni & Development, 314-935-8730
Center for Engineering MechanoBiology Summer Research Program Begins https://engineering.wustl.edu/Events/Pages/Center-for-Engineering-MechanoBiology-Summer-Research-Program-Begins.aspx1365Center for Engineering MechanoBiology Summer Research Program Begins 2018-05-29T05:00:00Z<p><a href="https://cemb.wustl.edu/">The Center for Engineering MechanoBiology (CEMB)</a> 2018 Summer Research Experience for Undergraduates Program is designed for students to pursue innovative research with a National Science Foundation Science and Technology Center.<br/></p><p><strong>Program Dates: </strong>May 29 – August 3, 2018<br/><b>Website:</b> <a href="http://www.cemb.org/">www.cemb.org</a> </p><p><strong>Research areas:</strong> molecular biology; cell and tissue mechanics in plants and animals; bioengineering; biochemistry; biophysics; computational biology; biomedical devices; nanoscale science and engineering<br/></p>Patience Graybill, patience.graybill@wustl.edu
Center for Engineering MechanoBiology Summer Research Program Endshttps://engineering.wustl.edu/Events/Pages/Center-for-Engineering-MechanoBiology-Summer-Research-Program-Ends.aspx1366Center for Engineering MechanoBiology Summer Research Program Ends2018-08-03T05:00:00Z<p><a href="https://cemb.wustl.edu/">The Center for Engineering MechanoBiology (CEMB)</a> 2018 Summer Research Experience for Undergraduates Program is designed for students to pursue innovative research with a National Science Foundation Science and Technology Center.<br/></p><p><strong>Program Dates: </strong>May 29 – August 3, 2018<br/><strong>Website:</strong> <a href="http://www.cemb.org/">www.cemb.org</a> </p><p><strong>Research areas:</strong> molecular biology; cell and tissue mechanics in plants and animals; bioengineering; biochemistry; biophysics; computational biology; biomedical devices; nanoscale science and engineering<br/></p>Patience Graybill, patience.graybill@wustl.edu
International Aerosol Conference 2018https://engineering.wustl.edu/Events/Pages/International-Aerosol-Conference-2018-Day-1.aspx1383International Aerosol Conference 20182018-09-02T05:00:00ZKim Coleman, 314-935-5548
International Aerosol Conference 2018https://engineering.wustl.edu/Events/Pages/International-Aerosol-Conference-2018-Day-2.aspx1384International Aerosol Conference 20182018-09-03T05:00:00ZKim Coleman, 314-935-5548
International Aerosol Conference 2018https://engineering.wustl.edu/Events/Pages/International-Aerosol-Conference-2018-Day-3.aspx1385International Aerosol Conference 20182018-09-04T05:00:00ZKim Coleman, 314-935-5548