ABSTRACT
Understanding selectivity in sensors and heterogeneous catalysis at the nanoscale illustrates a range of diverse physical phenomena. Shrinking sensors to the nanoscale introduces novel selectivity mechanisms and enables the ultimate sensitivity limit, single-molecule detection. Single-walled carbon nanotubes, with a bright fluorescence signal and no photobleaching, are a platform for implantable near-IR sensors capable of selectively detecting a range of small-molecules including the radical signaling molecule nitric oxide, the hormone estradiol, and sugars such as glucose. Selectivity is achieved by engineering an adsorbed phase of polymers, DNA, or surfactants at the nanotube/solution interface. I will discuss methods and limits to integrating data from many noisy stochastic sensors, show how we can use these sensors to monitor nitric oxide inside cells with unprecedented spatiotemporal resolution, and describe what is needed to engineer a selective adsorbed phase. I will also discuss on-going work to understand selectivity in electrochemical and thermal heterogeneous catalysis in light of enormous network complexity.

Zachary Ulissi, PhD
Postdoctoral Fellow, Dept. of Chemical Engineering, Stanford University

Zachary is a post-doctoral fellow in the Department of Chemical Engineering at Stanford working with Jens Nørskov, where he applies molecular simulations and systems engineering approaches to designing selective catalyst materials for ammonia and syngas chemistries. He completed his PhD in Chemical Engineering at MIT in the labs of Michael Strano and Richard Braatz, developing models and simulations to understand selectivity in carbon-nanotube based sensor systems, supported by a DOE Computational Science Graduate Fellowship. Prior to MIT, Zachary completed dual degrees in Chemical Engineering and Physics at the University of Delaware (2009), and a Masters of Advanced Study (M.A.St.) in Applied Mathematics in Churchill College at the University of Cambridge on an NSF GRFP Fellowship.